If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2+80x-80=0
a = 18; b = 80; c = -80;
Δ = b2-4ac
Δ = 802-4·18·(-80)
Δ = 12160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12160}=\sqrt{64*190}=\sqrt{64}*\sqrt{190}=8\sqrt{190}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-8\sqrt{190}}{2*18}=\frac{-80-8\sqrt{190}}{36} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+8\sqrt{190}}{2*18}=\frac{-80+8\sqrt{190}}{36} $
| 2(x+2)=4x+2 | | t^2-10t+33=0 | | 6-a=3 | | 4m-4=8-8m | | -23=-8y+3(y-6) | | 11-c=10 | | 18x^2+25x-80=0 | | 18x^2+25-80=0 | | 12+x=11+11 | | 3=2(x+4)-7x | | (x-25)/95=0.21 | | -6(k-9)=48 | | 2(3x-8)=7x+13-x | | 10=t+4 | | 2p+10=40. | | 9(x+3)-5x=29 | | 10=t{+4 | | 3x+39•3(5x-3)=1 | | |-x+7|=7 | | 3x^2+2x^2=55 | | 2(4-d+2d)=8+2d | | 4x+7=+3x+12 | | 4(x+1-3x=50 | | n+94=n+25 | | R(x)=100+6.40x, | | 2x+5+55x=180 | | 2x+15=7x+30 | | -3/4(2a−6)+1/2=2/5(3a+20) | | 4x+3x+x=360,x | | 4x+2+30=180 | | -20=2x-6=2 | | 29=5+11+c |